On the curvature of the Milnor fiber

نویسنده

  • Jean-Jacques Risler
چکیده

Let C be a germ at O ∈ R of a real analytic plane curve, CC its complexification, Ct ⊂ Bε a real smooth deformation of C in the ball Bε = B(O, ε). We prove the following inequality between integral of real (resp. gaussian) curvatures k (resp. K) of Ct (resp. CC t ): 2limε,t→0 ∫ Cε t |k| ≤ limε,t→0 ∫ CεC t |K|. We prove the sharpness of this inequality in case C is a real irreducible germ. Similar results are proved for an affine algebraic curve C ⊂ R2 of degree d. Résumé Soit C un germe en O ∈ R2 d’une courbe analytique réelle plane, CC sa complexification, Ct ⊂ Bε une déformation réelle lisse de C dans le disque Bε = B(O, ε). On montre l’inégalité suivante entre la courbure réelle k de Ct et la courbure gaussienne K de CC t : 2limε,t→0 ∫ Cε t |k| ≤ limε,t→0 ∫ CεC t |K|. On prouve que cette inégalité est optimale dans le cas où C est un germe réel irréductible. Des résultats similaires sont prouvés pour une courbe algébrique affine lisse C ⊂ R2 de degré d.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature Integrals on the Real Milnor Fibre

Let f : Rn+1 → R be a polynomial with an isolated critical point at 0 and let ft : Rn+1 → R be a one-parameter deformation of f . We study the differential geometry of the real Milnor fiber Cε t = f −1 t (0) ∩ B n+1 ε . More precisely, we express the following limits : lim ε→0 lim t→0 1 εk ∫ Cε t sn−k(x) dx, where sn−k is the (n− k)-th symmetric function of curvature, in terms of the following ...

متن کامل

Singular Cohomology of the Analytic Milnor Fiber, and Mixed Hodge Structure on the Nearby Cohomology

We describe the homotopy type of the analytic Milnor fiber in terms of the special fiber of a strictly semi-stable reduction, and we show that its singular cohomology coincides with the weight zero part of the mixed Hodge structure on the nearby cohomology. In the appendix, we consider the de Rham cohomology of the analytic Milnor fiber of an isolated singularity, and we re-interpret some class...

متن کامل

Motivic Milnor Fibre of Cyclic L∞-algebras

We define motivic Milnor fibre of cyclic L∞-algebras of dimension three using the method of Denef and Loeser of motivic integration. It is proved by Nicaise and Sebag that the topological Euler characteristic of the motivic Milnor fiber is equal to the Euler characteristic of the étale cohomology of the analytic Milnor fiber. We prove that the value of Behrend function on the germ moduli space ...

متن کامل

Sensitivity Enhancement of Fiber Optic Diesel Adulteration Detection Sensor Using Stripped Clad SBend Section

A novel geometry for enhancing the sensitivity of intensity modulated refractometric fiber optic sensor for detection of adulteration level in diesel by kerosene is proposed. In this multimode plastic optical fiber is uncladded for specific length and bent into S shape. This geometry is simulated and analyzed using Beam Propagation Method in Beam prop RSOFT software. When sensor is immersed in ...

متن کامل

On Milnor Fibrations of Arrangements

We use covering space theory and homology with local coefficients to study the Milnor fiber of a homogeneous polynomial. These techniques are applied in the context of hyperplane arrangements, yielding an explicit algorithm for computing the Betti numbers of the Milnor fiber of an arbitrary real central arrangement in C3, as well as the dimensions of the eigenspaces of the algebraic monodromy. ...

متن کامل

Morse theory, Milnor fibers and hyperplane arrangements

Through the study of Morse theory on the associated Milnor fiber, we show that complex hyperplane arrangement complements are minimal. That is, the complement of any complex hyperplane arrangement has the homotopy type of a CW complex in which the number of p-cells equals the p-th betti number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002